点击右上角微信好友

朋友圈

请使用浏览器分享功能进行分享

正在阅读:welcome购彩大厅客户端下载-welcome购彩大厅注册
首页>文化频道>要闻>正文

welcome购彩大厅客户端下载-welcome购彩大厅注册

来源:welcome购彩大厅网投2020-12-03 17:48

  

激发榜样教育新的生机和活力******

  据报道,近日北京市某学校在每个班级的壁报中开辟“我心中的榜样”专栏,师生共同探讨本班的“榜样人物”,并且将班级命名为“雷锋班”“钱学森班”等,每班还选出了一名榜样故事宣讲员,专门介绍本班的“榜样人物”。

  榜样教育历来是青少年思想政治教育的重要手段。青少年处在“拔节孕穗期”,加强榜样教育,引导他们领悟榜样的力量,帮他们扣好人生第一颗扣子,尤为重要。近年来,榜样模范辈出,先进典型不断。从全国道德模范到时代楷模,从“共和国勋章”获得者到“七一勋章”获得者,从全国教书育人楷模到最美大学生……他们的崇高精神令人感动,他们的责任担当令人感佩,他们用榜样的力量温暖人鼓舞人启迪人。这些先进典型和榜样,是思想政治教育的生动教材,已经融入立德树人的全过程各方面。

  但同时也要看到,在青少年榜样教育方面还存在不容忽视的问题。中国青少年研究中心日前发布的《少年儿童的偶像与榜样研究报告》显示,青少年认为学校的榜样教育主要存在“对榜样的宣传太死板”“榜样千篇一律没有个性”“榜样离太远起不到激励作用”等问题,比例均在两成以上。这也提醒我们,要更新榜样教育的理念,改进榜样教育的方式,让榜样与青少年的精神世界产生同频共振,激发榜样教育新的生机和活力。

  要引导青少年树立正确的榜样观。与榜样密切相关的一个词是偶像。榜样是理想中的“我”,是自己通过理性选择的人生典范。我们强调榜样教育,因为榜样永不过时,具有穿越时空的精神力量。偶像与榜样有相似之处,就是他们的感召力和吸引力。但是,偶像往往是一种不加批判而盲目加以崇拜的对象。如果说榜样的选择是理性的,是经过反复比较后的慎重选择,那么偶像崇拜则往往是非理性的,或是出于某种喜好,或是从众心理使然。偶像崇拜是青少年群体中的一种客观现象,无法回避,但是需要用正确的榜样观来引领,防止沉迷偶像崇拜。

  要更新榜样教育的理念和方式方法。传统的榜样教育往往过分注重教育,忽视了青少年的感受和兴趣,因而受教育效果打了折扣。在以互联网为代表的新媒体背景下,传播和教育的手段非常丰富,选择的空间非常大。要更新榜样教育的理念,多采用隐性教育。要贴近青少年的实际,贴近青少年的兴趣,将教育性寓于趣味性之中。可以多采用青少年喜闻乐见的方式,运用新媒体技术生动呈现故事、文字和哲理,使榜样教育活起来。要注重引导青少年在生活中学习榜样。教育必须回归生活实际。在对青少年进行榜样教育时,也要注重生活化。在日常的学习和生活中,要增加青少年模仿和践行的机会,增强榜样教育的效果。比如,在日常教学活动中,要探索多种举措发现身边的榜样事迹、榜样人物,比如以班级研讨、小组评比的形式选树班级、年级、学校榜样人物。

  要形成榜样教育的合力。家长是孩子的第一任老师,在榜样教育中这个角色的分量更重,因为家长往往都是孩子的榜样。家长要改变那种一味把自己的孩子与别人家孩子比的思维,引导孩子树立正确的榜样观和成才观。特别是要做到以身作则、言传身教,让自己成为孩子引以为傲的榜样。学校要发挥教育主阵地作用,把榜样教育融入教育教学全过程,改进教育教学方式,不断提升教育实效。社会要各司其职,各负其责,形成全社会尊重和学习榜样的良好氛围,助力青少年的健康成长。

  需要指出的是,激发榜样教育新的生机和活力涉及的方面很多。不同学年段的青少年,对榜样的认知、选择和接受等存在明显的差异。当前,迫切需要加强对榜样教育的研究,形成适应青少年不同学年段身心发展特点的螺旋式递进的榜样教育。

  (作者:李传哲,系首都师范大学马克思主义学院博士生)

welcome购彩大厅客户端下载

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?******

  相比起今年诺贝尔生理学或医学奖、物理学奖的高冷,今年诺贝尔化学奖其实是相当接地气了。

  你或身边人正在用的某些药物,很有可能就来自他们的贡献。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  2022 年诺贝尔化学奖因「点击化学和生物正交化学」而共同授予美国化学家卡罗琳·贝尔托西、丹麦化学家莫滕·梅尔达、美国化学家巴里·夏普莱斯(第5位两次获得诺贝尔奖的科学家)。

  一、夏普莱斯:两次获得诺贝尔化学奖

  2001年,巴里·夏普莱斯因为「手性催化氧化反应[1] [2] [3]」获得诺贝尔化学奖,对药物合成(以及香料等领域)做出了巨大贡献。

  今年,他第二次获奖的「点击化学」,同样与药物合成有关。

  1998年,已经是手性催化领军人物的夏普莱斯,发现了传统生物药物合成的一个弊端。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  过去200年,人们主要在自然界植物、动物,以及微生物中能寻找能发挥药物作用的成分,然后尽可能地人工构建相同分子,以用作药物。

  虽然相关药物的工业化,让现代医学取得了巨大的成功。然而随着所需分子越来越复杂,人工构建的难度也在指数级地上升。

  虽然有的化学家,的确能够在实验室构造出令人惊叹的分子,但要实现工业化几乎不可能。

  有机催化是一个复杂的过程,涉及到诸多的步骤。

  任何一个步骤都可能产生或多或少的副产品。在实验过程中,必须不断耗费成本去去除这些副产品。

  不仅成本高,这还是一个极其费时的过程,甚至最后可能还得不到理想的产物。

  为了解决这些问题,夏普莱斯凭借过人智慧,提出了「点击化学(Click chemistry)」的概念[4]。

  点击化学的确定也并非一蹴而就的,经过三年的沉淀,到了2001年,获得诺奖的这一年,夏普莱斯团队才完善了「点击化学」。

  点击化学又被称为“链接化学”,实质上是通过链接各种小分子,来合成复杂的大分子。

  夏普莱斯之所以有这样的构想,其实也是来自大自然的启发。

  大自然就像一个有着神奇能力的化学家,它通过少数的单体小构件,合成丰富多样的复杂化合物。

  大自然创造分子的多样性是远远超过人类的,她总是会用一些精巧的催化剂,利用复杂的反应完成合成过程,人类的技术比起来,实在是太粗糙简单了。

  大自然的一些催化过程,人类几乎是不可能完成的。

  一些药物研发,到了最后却破产了,恰恰是卡在了大自然设下的巨大陷阱中。

   夏普莱斯不禁在想,既然大自然创造的难度,人类无法逾越,为什么不还给大自然,我们跳过这个步骤呢?

  大自然有的是不需要从头构建C-C键,以及不需要重组起始材料和中间体。

  在对大型化合物做加法时,这些C-C键的构建可能十分困难。但直接用大自然现有的,找到一个办法把它们拼接起来,同样可以构建复杂的化合物。

  其实这种方法,就像搭积木或搭乐高一样,先组装好固定的模块(甚至点击化学可能不需要自己组装模块,直接用大自然现成的),然后再想一个方法把模块拼接起来。

  诺贝尔平台给三位化学家的配图,可谓是形象生动[5] [6]:

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  夏普莱斯从碳-杂原子键上获得启发,构想出了碳-杂原子键(C-X-C)为基础的合成方法。

  他的最终目标,是开发一套能不断扩展的模块,这些模块具有高选择性,在小型和大型应用中都能稳定可靠地工作。

  「点击化学」的工作,建立在严格的实验标准上:

  反应必须是模块化,应用范围广泛

  具有非常高的产量

  仅生成无害的副产品

  反应有很强的立体选择性

  反应条件简单(理想情况下,应该对氧气和水不敏感)

  原料和试剂易于获得

  不使用溶剂或在良性溶剂中进行(最好是水),且容易移除

  可简单分离,或者使用结晶或蒸馏等非色谱方法,且产物在生理条件下稳定

  反应需高热力学驱动力(>84kJ/mol)

  符合原子经济

  夏尔普莱斯总结归纳了大量碳-杂原子,并在2002年的一篇论文[7]中指出,叠氮化物和炔烃之间的铜催化反应是能在水中进行的可靠反应,化学家可以利用这个反应,轻松地连接不同的分子。

  他认为这个反应的潜力是巨大的,可在医药领域发挥巨大作用。

  二、梅尔达尔:筛选可用药物

  夏尔普莱斯的直觉是多么地敏锐,在他发表这篇论文的这一年,另外一位化学家在这方面有了关键性的发现。

  他就是莫滕·梅尔达尔。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  梅尔达尔在叠氮化物和炔烃反应的研究发现之前,其实与“点击化学”并没有直接的联系。他反而是一个在“传统”药物研发上,走得很深的一位科学家。

  为了寻找潜在药物及相关方法,他构建了巨大的分子库,囊括了数十万种不同的化合物。

  他日积月累地不断筛选,意图筛选出可用的药物。

  在一次利用铜离子催化炔与酰基卤化物反应时,发生了意外,炔与酰基卤化物分子的错误端(叠氮)发生了反应,成了一个环状结构——三唑。

  三唑是各类药品、染料,以及农业化学品关键成分的化学构件。过去的研发,生产三唑的过程中,总是会产生大量的副产品。而这个意外过程,在铜离子的控制下,竟然没有副产品产生。

  2002年,梅尔达尔发表了相关论文。

  夏尔普莱斯和梅尔达尔也正式在“点击化学”领域交汇,并促使铜催化的叠氮-炔基Husigen环加成反应(Copper-Catalyzed Azide–Alkyne Cycloaddition),成为了医药生物领域应用最为广泛的点击化学反应。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  三、贝尔托齐西:把点击化学运用在人体内

  不过,把点击化学进一步升华的却是美国科学家——卡罗琳·贝尔托西。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  虽然诺奖三人平分,但不难发现,卡罗琳·贝尔托西排在首位,在“点击化学”构图中,她也在C位。

  诺贝尔化学奖颁奖时,也提到,她把点击化学带到了一个新的维度。

  她解决了一个十分关键的问题,把“点击化学”运用到人体之内,这个运用也完全超出创始人夏尔普莱斯意料之外的。

  这便是所谓的生物正交反应,即活细胞化学修饰,在生物体内不干扰自身生化反应而进行的化学反应。

  卡罗琳·贝尔托西打开生物正交反应这扇大门,其实最开始也和“点击化学”无关。

  20世纪90年代,随着分子生物学的爆发式发展,基因和蛋白质地图的绘制正在全球范围内如火如荼地进行。

  然而位于蛋白质和细胞表面,发挥着重要作用的聚糖,在当时却没有工具用来分析。

  当时,卡罗琳·贝尔托西意图绘制一种能将免疫细胞吸引到淋巴结的聚糖图谱,但仅仅为了掌握多聚糖的功能就用了整整四年的时间。

  后来,受到一位德国科学家的启发,她打算在聚糖上面添加可识别的化学手柄来识别它们的结构。

  由于要在人体中反应且不影响人体,所以这种手柄必须对所有的东西都不敏感,不与细胞内的任何其他物质发生反应。

  经过翻阅大量文献,卡罗琳·贝尔托西最终找到了最佳的化学手柄。

  巧合是,这个最佳化学手柄,正是一种叠氮化物,点击化学的灵魂。通过叠氮化物把荧光物质与细胞聚糖结合起来,便可以很好地分析聚糖的结构。

  虽然贝尔托西的研究成果已经是划时代的,但她依旧不满意,因为叠氮化物的反应速度很不够理想。

  就在这时,她注意到了巴里·夏普莱斯和莫滕·梅尔达尔的点击化学反应。

  她发现铜离子可以加快荧光物质的结合速度,但铜离子对生物体却有很大毒性,她必须想到一个没有铜离子参与,还能加快反应速度的方式。

  大量翻阅文献后,贝尔托西惊讶地发现,早在1961年,就有研究发现当炔被强迫形成一个环状化学结构后,与叠氮化物便会以爆炸式地进行反应。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  2004年,她正式确立无铜点击化学反应(又被称为应变促进叠氮-炔化物环加成),由此成为点击化学的重大里程碑事件。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  贝尔托西不仅绘制了相应的细胞聚糖图谱,更是运用到了肿瘤领域。

  在肿瘤的表面会形成聚糖,从而可以保护肿瘤不受免疫系统的伤害。贝尔托西团队利用生物正交反应,发明了一种专门针对肿瘤聚糖的药物。这种药物进入人体后,会靶向破坏肿瘤聚糖,从而激活人体免疫保护。

  目前该药物正在晚期癌症病人身上进行临床试验。

  不难发现,虽然「点击化学」和「生物正交化学」的翻译,看起来很晦涩难懂,但其实背后是很朴素的原理。一个是如同卡扣般的拼接,一个是可以直接在人体内的运用。

「  点击化学」和「生物正交化学」都还是一个很年轻的领域,或许对人类未来还有更加深远的影响。(宋云江)

  参考

  https://www.nobelprize.org/prizes/chemistry/2001/press-release/

  Pfenninger, A. Asymmetric Epoxidation of Allylic Alcohols: The Sharpless Epoxidation[J]. Synthesis, 1986, 1986(02):89-116.

  Rao A S . Addition Reactions with Formation of Carbon–Oxygen Bonds: (i) General Methods of Epoxidation - ScienceDirect[J]. Comprehensive Organic Synthesis, 1991, 7:357-387.

  Kolb HC, Finn MG, Sharpless KB. Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angew Chem Int Ed Engl. 2001 Jun 1;40(11):2004-2021.

  https://www.nobelprize.org/uploads/2022/10/popular-chemistryprize2022.pdf

  https://www.nobelprize.org/uploads/2022/10/advanced-chemistryprize2022.pdf

  Demko ZP, Sharpless KB. A click chemistry approach to tetrazoles by Huisgen 1,3-dipolar cycloaddition: synthesis of 5-acyltetrazoles from azides and acyl cyanides. Angew Chem Int Ed Engl. 2002 Jun 17;41(12):2113-6. PMID: 19746613.

  (文图:赵筱尘 巫邓炎)

[责编:天天中]
阅读剩余全文(

相关阅读

视觉焦点

  • 汉藏语系在新石器时代晚期起源中国北方

  • 刚买一年价格掉一半 新能源车为啥转手就尴尬?

独家策划

推荐阅读
welcome购彩大厅交流群2022“中国非遗年度人物”推选宣传活动启动
2024-08-09
welcome购彩大厅登录 花808万进耶鲁!21岁中国女孩卷入美国舞弊案,最贵的花4300万
2024-08-02
welcome购彩大厅下载差点将蒋介石气疯的"黄埔三鹰"
2024-06-06
welcome购彩大厅app下载终于来了!央行将发行2019年版第五套人民币
2024-09-23
welcome购彩大厅登录自称“大学生”兼职招嫖 这款热门交友软件下架
2024-03-12
welcome购彩大厅赔率 31岁男子用假驾照被罚 父母质问交警:他还是个孩子啊
2024-01-20
welcome购彩大厅官网平台职场菜鸟的时髦经,你值得拥有
2024-03-07
welcome购彩大厅手机版 谢霆锋爸爸不甘寂寞,港媒曝82岁谢贤密会电眼艳女
2024-02-19
welcome购彩大厅网址跨省招人“忙” 招聘活动“热”——节后用工市场观察2023年重庆首趟务工定制专列开出苗族“跳月”闹新春湖南长沙:节后招聘求职忙
2024-06-23
welcome购彩大厅手机版APP小红书代写产业链:编出"种草"笔记 花钱可上热门推荐
2023-12-21
welcome购彩大厅漏洞 272名工作人员被累死!印尼大选1.93亿选票全靠人工数
2024-08-09
welcome购彩大厅代理陕西一中学女生被学生殴打
2024-09-01
welcome购彩大厅规则夺冠后马龙大喊的这句英文冲上热搜第一 网友留言亮了
2024-03-16
welcome购彩大厅走势图汤神疑似垫脚哈登不吹!爵士喊冤
2024-02-04
welcome购彩大厅官方足球版"真香" 王健林20年前宣布永远退出足坛今高调复出
2024-02-20
welcome购彩大厅软件 进口车跟合资车 到底哪种质量更好?
2024-08-11
welcome购彩大厅APP[专访]李强:POYi获奖摄影师
2023-12-01
welcome购彩大厅娱乐刘诗诗升级当妈:小朋友超级可爱
2024-01-16
welcome购彩大厅官网邓紫棋巡演落幕感慨良多:两年间经历改变人生
2024-04-15
welcome购彩大厅计划魔域“太和”四季 域你共享
2024-05-22
welcome购彩大厅投注浙江发布近视防控意见
2024-04-23
welcome购彩大厅下载app 沈梦辰穿上婚纱了!!关晓彤这次的红毯裙我无法吐槽
2024-04-18
welcome购彩大厅计划群 南京珍珠泉,地下泉水冒出似明珠
2024-08-08
welcome购彩大厅充值唐嫣江疏影都爱穿的“心跳裙” 有什么诱惑力?
2024-04-27
加载更多
welcome购彩大厅地图